Cosets of affine vertex algebras inside larger structures

Andrew R. Linshaw

University of Denver

Joint work with T. Creutzig (University of Alberta),

Based on arXiv:1407.8512.

Let \mathcal{V} be a vertex algebra.

 $G \subset Aut(V)$ a finite-dimensional, reductive group. Define *orbifold*

$$\mathcal{V}^G = \{ v \in \mathcal{V} | gv = v, \quad \forall g \in G \}.$$

 $\mathcal{A} \subset \mathcal{V}$ a vertex subalgebra. Define *coset*

$$\mathsf{Com}(\mathcal{A}, \mathcal{V}) = \{ v \in \mathcal{V} | [a(z), v(w)] = 0, \quad \forall a \in \mathcal{A} \}.$$

Suppose V has a nice property, such as strong finite generation, C_2 -cofiniteness, or rationality.

Problem: Do \mathcal{V}^G and $\mathsf{Com}(\mathcal{A},\mathcal{V})$ inherit this property?

Let $\mathcal V$ be a vertex algebra.

 $G\subset \operatorname{\mathsf{Aut}}(\mathcal{V})$ a finite-dimensional, reductive group. Define $\mathit{orbifold}$

$$\mathcal{V}^G = \{ v \in \mathcal{V} | gv = v, \quad \forall g \in G \}.$$

 $\mathcal{A} \subset \mathcal{V}$ a vertex subalgebra. Define *coset*

$$\mathsf{Com}(\mathcal{A}, \mathcal{V}) = \{ v \in \mathcal{V} | \ [a(z), v(w)] = 0, \quad \forall a \in \mathcal{A} \}.$$

Suppose V has a nice property, such as strong finite generation, C_2 -cofiniteness, or rationality.

Problem: Do \mathcal{V}^G and $\mathsf{Com}(\mathcal{A},\mathcal{V})$ inherit this property?

Let \mathcal{V} be a vertex algebra.

 $G\subset \mathsf{Aut}(\mathcal{V})$ a finite-dimensional, reductive group. Define $\mathit{orbifold}$

$$\mathcal{V}^G = \{ v \in \mathcal{V} | gv = v, \quad \forall g \in G \}.$$

 $\mathcal{A} \subset \mathcal{V}$ a vertex subalgebra. Define coset

$$\mathsf{Com}(\mathcal{A}, \mathcal{V}) = \{ v \in \mathcal{V} | [a(z), v(w)] = 0, \quad \forall a \in \mathcal{A} \}.$$

Suppose $\mathcal V$ has a nice property, such as strong finite generation, $\mathcal C_2$ -cofiniteness, or rationality.

Problem: Do \mathcal{V}^G and $Com(\mathcal{A}, \mathcal{V})$ inherit this property?

Let \mathcal{V} be a vertex algebra.

 $G\subset \mathsf{Aut}(\mathcal{V})$ a finite-dimensional, reductive group. Define $\mathit{orbifold}$

$$\mathcal{V}^G = \{ v \in \mathcal{V} | gv = v, \quad \forall g \in G \}.$$

 $\mathcal{A} \subset \mathcal{V}$ a vertex subalgebra. Define *coset*

$$Com(\mathcal{A}, \mathcal{V}) = \{ v \in \mathcal{V} | [a(z), v(w)] = 0, \forall a \in \mathcal{A} \}.$$

Suppose $\mathcal V$ has a nice property, such as strong finite generation, $\mathcal C_2$ -cofiniteness, or rationality.

Problem: Do \mathcal{V}^G and $\mathsf{Com}(\mathcal{A},\mathcal{V})$ inherit this property?

Let \mathcal{V} be a vertex algebra.

 $G\subset \mathsf{Aut}(\mathcal{V})$ a finite-dimensional, reductive group. Define $\mathit{orbifold}$

$$\mathcal{V}^G = \{ v \in \mathcal{V} | gv = v, \quad \forall g \in G \}.$$

 $\mathcal{A} \subset \mathcal{V}$ a vertex subalgebra. Define *coset*

$$Com(\mathcal{A}, \mathcal{V}) = \{ v \in \mathcal{V} | [a(z), v(w)] = 0, \forall a \in \mathcal{A} \}.$$

Suppose $\mathcal V$ has a nice property, such as strong finite generation, C_2 -cofiniteness, or rationality.

Problem: Do \mathcal{V}^G and $Com(\mathcal{A},\mathcal{V})$ inherit this property?

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over $\mathbb C$).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of G-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^G$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over \mathbb{C}).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of G-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^G$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over $\mathbb C$).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of G-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^G$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over $\mathbb C$).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of *G*-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^G$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over \mathbb{C}).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of *G*-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^{G}$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over \mathbb{C}).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of *G*-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^{G}$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over \mathbb{C}).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of *G*-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^{G}$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

Let V be a G-module. For $j \geq 0$, let $V_j \cong V$. Let

$$R=\mathbb{C}[\oplus_{j\geq 0}V_j]^G.$$

First fundamental theorem (FFT) for (G, V) is a set of generators for R.

Second fundamental theorem (SFT) for (G, V) is a set of generators for the ideal of relations in R.

- ► Standard representations of classical groups (Weyl, 1939)
- ▶ Adjoint representations of classical groups (Procesi, 1976),
- ▶ 7-dimensional respresentation of G_2 (Schwarz, 1988).

Let V be a G-module. For $j \geq 0$, let $V_j \cong V$. Let

$$R=\mathbb{C}[\oplus_{j\geq 0}V_j]^G.$$

First fundamental theorem (FFT) for (G, V) is a set of generators for R.

Second fundamental theorem (SFT) for (G, V) is a set of generators for the ideal of relations in R.

- ► Standard representations of classical groups (Weyl, 1939)
- ▶ Adjoint representations of classical groups (Procesi, 1976),
- ▶ 7-dimensional respresentation of G_2 (Schwarz, 1988).

Let V be a G-module. For $j \geq 0$, let $V_j \cong V$. Let

$$R=\mathbb{C}[\oplus_{j\geq 0}V_j]^G.$$

First fundamental theorem (FFT) for (G, V) is a set of generators for R.

Second fundamental theorem (SFT) for (G, V) is a set of generators for the ideal of relations in R.

- ► Standard representations of classical groups (Weyl, 1939)
- ► Adjoint representations of classical groups (Procesi, 1976),
- ▶ 7-dimensional respresentation of G_2 (Schwarz, 1988).

Let V be a G-module. For $j \geq 0$, let $V_j \cong V$. Let

$$R=\mathbb{C}[\oplus_{j\geq 0}V_j]^G.$$

First fundamental theorem (FFT) for (G, V) is a set of generators for R.

Second fundamental theorem (SFT) for (G, V) is a set of generators for the ideal of relations in R.

- ► Standard representations of classical groups (Weyl, 1939)
- Adjoint representations of classical groups (Procesi, 1976),
- ▶ 7-dimensional respresentation of G_2 (Schwarz, 1988).

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0} V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \le j$.

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \le j$.

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \leq j$.

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \le j$.

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \le j$.

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \le j$.

Heisenberg vertex algebra ${\mathcal H}$ has generator b(z) satisfying $b(z)b(w)\sim (z-w)^{-2}.$

Basis
$$\{: \partial^{k_1}b \cdots \partial^{k_r}b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{Aut}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 $\mathcal H$ is linearly isomorphic to $\mathbb C[x_0,x_1,x_2,\dots]$ where $x_j\leftrightarrow\partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_i) = -x_i$

Heisenberg vertex algebra ${\cal H}$ has generator b(z) satisfying $b(z)b(w)\sim (z-w)^{-2}.$

Basis
$$\{: \partial^{k_1} b \cdots \partial^{k_r} b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{Aut}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 $\mathcal H$ is linearly isomorphic to $\mathbb C[x_0,x_1,x_2,\dots]$ where $x_j\leftrightarrow\partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_i) = -x_i$

Heisenberg vertex algebra ${\mathcal H}$ has generator b(z) satisfying

$$b(z)b(w)\sim (z-w)^{-2}.$$

Basis
$$\{: \partial^{k_1}b \cdots \partial^{k_r}b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{\mathsf{Aut}}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 $\mathcal H$ is linearly isomorphic to $\mathbb C[x_0,x_1,x_2,\dots]$ where $x_j\leftrightarrow\partial^j b$

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_j) = -x_j$

Heisenberg vertex algebra ${\mathcal H}$ has generator b(z) satisfying

$$b(z)b(w) \sim (z - w)^{-2}$$
.

Basis
$$\{: \partial^{k_1} b \cdots \partial^{k_r} b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{\mathsf{Aut}}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 $\mathcal H$ is linearly isomorphic to $\mathbb C[x_0,x_1,x_2,\dots]$ where $x_j\leftrightarrow\partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_j) = -x_j$

Heisenberg vertex algebra ${\mathcal H}$ has generator b(z) satisfying

$$b(z)b(w) \sim (z - w)^{-2}$$
.

Basis
$$\{: \partial^{k_1} b \cdots \partial^{k_r} b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{\mathsf{Aut}}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 \mathcal{H} is linearly isomorphic to $\mathbb{C}[x_0, x_1, x_2, \dots]$ where $x_j \leftrightarrow \partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_i) = -x_i$

Heisenberg vertex algebra ${\mathcal H}$ has generator b(z) satisfying

$$b(z)b(w) \sim (z - w)^{-2}$$
.

Basis
$$\{: \partial^{k_1} b \cdots \partial^{k_r} b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{\mathsf{Aut}}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 \mathcal{H} is linearly isomorphic to $\mathbb{C}[x_0, x_1, x_2, \dots]$ where $x_j \leftrightarrow \partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_i) = -x_i$.

 $R = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$ has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

Relations are $q_{i,j}q_{k,l} - q_{i,k}q_{j,l}$.

$$R\cong \mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$$
, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall
$$\partial(a_{i,j}) = a_{i+1,j} + a_{i,j+1,j}$$

 $\{a_0|_{2k}|_{k}>0\}$ minimal generating set for R as a differential algebra.

 $\{\omega_{0.2k}|k\geq 0\}$ strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

$$R = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$$
 has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

$$R\cong\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$$
, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall
$$\partial(g_{i,j}) = g_{i+1,j} + g_{i,j+1,j}$$

$$\{\omega_{0,2k}|k\geq 0\}$$
 strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

$$R = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$$
 has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

Relations are $q_{i,j}q_{k,l} - q_{i,k}q_{j,l}$.

 $R\cong \mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$:

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall
$$\partial(q_{i,j}) = q_{i+1,j} + q_{i,j+1}$$
.

 $\{q_{0,2k}|k\geq 0\}$ minimal generating set for R as a differential algebra.

 $\{\omega_{0,2k}|k\geq 0\}$ strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

$$R = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$$
 has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

Relations are $q_{i,j}q_{k,l} - q_{i,k}q_{j,l}$.

 $R\cong \mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$:

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall $\partial(q_{i,j}) = q_{i+1,j} + q_{i,j+1}$.

 $\{q_{0,2k}|k>0\}$ minimal generating set for R as a differential algebra.

 $\{\omega_{0,2k}|k\geq 0\}$ strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

$$R=\mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$$
 has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

Relations are $q_{i,j}q_{k,l} - q_{i,k}q_{j,l}$.

 $R\cong \mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$:

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall $\partial(q_{i,j}) = q_{i+1,j} + q_{i,j+1}$.

 $\{q_{0,2k}|k\geq 0\}$ minimal generating set for R as a differential algebra.

 $\{\omega_{0,2k}|k\geq 0\}$ strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

$$R = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$$
 has generators

$$q_{i,j} = x_i x_i, \qquad 0 \le i \le j.$$

Relations are $q_{i,i}q_{k,l} - q_{i,k}q_{i,l}$.

 $R \cong \mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$:

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall $\partial(q_{i,j}) = q_{i+1,j} + q_{i,j+1}$.

 $\{q_{0,2k}|k\geq 0\}$ minimal generating set for R as a differential algebra.

 $\{\omega_{0.2k}|k\geq 0\}$ strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

Thm: (Dong-Nagatomo, 1999) $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$ has minimal strong generating set $\{\omega_{0,0},\omega_{0,2}\}$, and is of type $\mathcal{W}(2,4)$.

For all $k \geq 2$, we have a decoupling relation $\omega_{0,2k} = P(\omega_{0,0}, \omega_{0,2})$.

$$\begin{aligned} \mathbf{E}\mathbf{x}: & \ \omega_{0,4} = -\frac{2}{5}: \omega_{0,0}\partial^2\omega_{0,0}: \ +\frac{4}{5}: \omega_{0,0}\omega_{0,2}: \ +\frac{1}{5}: \partial\omega_{0,0}\partial\omega_{0,0}: \\ & \ +\frac{7}{5}\partial^2\omega_{0,2} -\frac{7}{30}\partial^4\omega_{0,0}. \end{aligned}$$

Alternatively, this can be written in the form

$$\omega_{0,4} = -\frac{4}{5}(:\omega_{0,0}\omega_{1,1}: - :\omega_{0,1}\omega_{0,1}:) + \frac{7}{5}\partial^2\omega_{0,2} - \frac{7}{30}\partial^4\omega_{0,0}.$$

This is a *quantum correction* of the analogous classical relation $q_{0,0}q_{1,1}-q_{0,1}q_{0,1}$.

Thm: (Dong-Nagatomo, 1999) $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$ has minimal strong generating set $\{\omega_{0,0},\omega_{0,2}\}$, and is of type $\mathcal{W}(2,4)$.

For all $k \geq 2$, we have a decoupling relation $\omega_{0,2k} = P(\omega_{0,0}, \omega_{0,2})$.

$$\mathbf{Ex}: \quad \omega_{0,4} = -\frac{2}{5} : \omega_{0,0} \partial^2 \omega_{0,0} : \ +\frac{4}{5} : \omega_{0,0} \omega_{0,2} : \ +\frac{1}{5} : \partial \omega_{0,0} \partial \omega_{0,0} : \\ +\frac{7}{5} \partial^2 \omega_{0,2} -\frac{7}{30} \partial^4 \omega_{0,0}.$$

Alternatively, this can be written in the form

$$\omega_{0,4} = -\frac{4}{5}(:\omega_{0,0}\omega_{1,1}: - :\omega_{0,1}\omega_{0,1}:) + \frac{7}{5}\partial^2\omega_{0,2} - \frac{7}{30}\partial^4\omega_{0,0}.$$

This is a *quantum correction* of the analogous classical relation $q_{0,0}q_{1,1}-q_{0,1}q_{0,1}$.

Thm: (Dong-Nagatomo, 1999) $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$ has minimal strong generating set $\{\omega_{0,0},\omega_{0,2}\}$, and is of type $\mathcal{W}(2,4)$.

For all $k \geq 2$, we have a decoupling relation $\omega_{0,2k} = P(\omega_{0,0}, \omega_{0,2})$.

$$\mathbf{Ex}: \quad \omega_{0,4} = -\frac{2}{5} : \omega_{0,0} \partial^2 \omega_{0,0} : \ +\frac{4}{5} : \omega_{0,0} \omega_{0,2} : \ +\frac{1}{5} : \partial \omega_{0,0} \partial \omega_{0,0} : \\ +\frac{7}{5} \partial^2 \omega_{0,2} -\frac{7}{30} \partial^4 \omega_{0,0}.$$

Alternatively, this can be written in the form

$$\omega_{0,4} = -\frac{4}{5}(:\omega_{0,0}\omega_{1,1}: \ - \ :\omega_{0,1}\omega_{0,1}:) + \frac{7}{5}\partial^2\omega_{0,2} - \frac{7}{30}\partial^4\omega_{0,0}.$$

This is a *quantum correction* of the analogous classical relation $q_{0,0}q_{1,1}-q_{0,1}q_{0,1}$.

Thm: (Dong-Nagatomo, 1999) $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$ has minimal strong generating set $\{\omega_{0,0},\omega_{0,2}\}$, and is of type $\mathcal{W}(2,4)$.

For all $k \geq 2$, we have a decoupling relation $\omega_{0,2k} = P(\omega_{0,0}, \omega_{0,2})$.

$$\mathbf{Ex}: \quad \omega_{0,4} = -\frac{2}{5} : \omega_{0,0} \partial^2 \omega_{0,0} : \ +\frac{4}{5} : \omega_{0,0} \omega_{0,2} : \ +\frac{1}{5} : \partial \omega_{0,0} \partial \omega_{0,0} : \\ +\frac{7}{5} \partial^2 \omega_{0,2} -\frac{7}{30} \partial^4 \omega_{0,0}.$$

Alternatively, this can be written in the form

$$\omega_{0,4} = -\frac{4}{5}(:\omega_{0,0}\omega_{1,1}: - :\omega_{0,1}\omega_{0,1}:) + \frac{7}{5}\partial^2\omega_{0,2} - \frac{7}{30}\partial^4\omega_{0,0}.$$

This is a *quantum correction* of the analogous classical relation $q_{0,0}q_{1,1} - q_{0,1}q_{0,1}$.

Thm: (Dong-Nagatomo, 1999) $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$ has minimal strong generating set $\{\omega_{0,0},\omega_{0,2}\}$, and is of type $\mathcal{W}(2,4)$.

For all $k \geq 2$, we have a decoupling relation $\omega_{0,2k} = P(\omega_{0,0}, \omega_{0,2})$.

$$\mathbf{Ex}: \quad \omega_{0,4} = -\frac{2}{5} : \omega_{0,0} \partial^2 \omega_{0,0} : \ +\frac{4}{5} : \omega_{0,0} \omega_{0,2} : \ +\frac{1}{5} : \partial \omega_{0,0} \partial \omega_{0,0} : \\ +\frac{7}{5} \partial^2 \omega_{0,2} -\frac{7}{30} \partial^4 \omega_{0,0}.$$

Alternatively, this can be written in the form

$$\omega_{0,4} = -\frac{4}{5}(:\omega_{0,0}\omega_{1,1}: - :\omega_{0,1}\omega_{0,1}:) + \frac{7}{5}\partial^2\omega_{0,2} - \frac{7}{30}\partial^4\omega_{0,0}.$$

This is a *quantum correction* of the analogous classical relation $q_{0.0}q_{1.1} - q_{0.1}q_{0.1}$.

Heisenberg algebra $\mathcal{H}(n)$: even generators $b^i, i=1,\ldots,n$, $b^i(z)b^j(w)\sim \delta_{i,j}(z-w)^{-2}$.

Free fermion algebra $\mathcal{F}(n)$: odd generators $\phi^i, i=1,\ldots,n,$ $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

$$eta\gamma$$
-system $\mathcal{S}(n)$: even generators $eta^i, \gamma^i, i=1,\ldots,n,$ $eta^i(z)\gamma^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

Symplectic fermion algebra $\mathcal{A}(n)$: odd generators $e^i, f^i, i = 1, \dots, n$,

$$e^{i}(z)f^{j}(w) \sim \delta_{i,j}(z-w)^{-2}$$

Heisenberg algebra $\mathcal{H}(n)$: even generators $b^i, i=1,\ldots,n$, $b^i(z)b^j(w)\sim \delta_{i,j}(z-w)^{-2}$.

Free fermion algebra $\mathcal{F}(n)$: odd generators $\phi^i, i=1,\ldots,n$, $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

$$eta\gamma$$
-system $\mathcal{S}(\textit{n})$: even generators $eta^i, \gamma^i, i=1,\ldots,n,$ $eta^i(z)\gamma^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

Symplectic fermion algebra $\mathcal{A}(n)$: odd generators $e^i, f^i, i = 1, \dots, n$,

$$e^{i}(z)f^{j}(w) \sim \delta_{i,j}(z-w)^{-2}$$

Heisenberg algebra $\mathcal{H}(n)$: even generators $b^i, i=1,\ldots,n$, $b^i(z)b^j(w)\sim \delta_{i,j}(z-w)^{-2}$.

Free fermion algebra $\mathcal{F}(n)$: odd generators $\phi^i, i=1,\ldots,n$, $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

 $eta\gamma$ -system $\mathcal{S}(\textit{n})$: even generators $eta^i, \gamma^i, i=1,\ldots,n$, $eta^i(z)\gamma^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

Symplectic fermion algebra $\mathcal{A}(n)$: odd generators $e^i, f^i, i = 1, \dots, n$,

$$e^{i}(z)f^{j}(w) \sim \delta_{i,j}(z-w)^{-2}$$

Heisenberg algebra $\mathcal{H}(n)$: even generators $b^i, i=1,\ldots,n,$ $b^i(z)b^j(w)\sim \delta_{i,j}(z-w)^{-2}.$

Free fermion algebra $\mathcal{F}(n)$: odd generators $\phi^i, i=1,\ldots,n$, $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

$$eta\gamma$$
-system $\mathcal{S}(\emph{n})$: even generators $eta^i, \gamma^i, i=1,\ldots,n$, $eta^i(\emph{z})\gamma^j(\emph{w})\sim \delta_{i,j}(\emph{z}-\emph{w})^{-1}.$

Symplectic fermion algebra $\mathcal{A}(\textit{n})$: odd generators $e^i, f^i, i=1,\ldots,\textit{n}$,

$$e^{i}(z)f^{j}(w) \sim \delta_{i,j}(z-w)^{-2}$$
.

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n)

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all $n \in \mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n)

Thm: (Creutzig-L, 2014) $A(n)^{Sp(2n)}$ is of type W(2, 4, ..., 2n).

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all $n \in \mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n)

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all $n \in \mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n)

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all $n \in \mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

 $\mathcal{S}(n)$ and $\mathcal{A}(n)$ have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n)

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all n, $\mathcal{H}(n)^{\mathcal{O}(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

 $\mathcal{S}(n)$ and $\mathcal{A}(n)$ have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n)

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2,4,\ldots,n^2+3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all $n \in \mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., 2n)$

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2,4,\ldots,n^2+3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all n, $\mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all n, $\mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\mathcal V}$ has a decompositior

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 $L_{
u}$ ranges over all irreducible, finite-dimensional $\mathsf{Aut}(\mathcal{V})$ -modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\mathrm{Aut}(\mathcal{V})}$, each M_{ν} is C_{1} -cofinite, C_{1} -cofinite, C_{2} -cofinite, $C_{$

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\mathcal V}$ has a decomposition

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is $C_{1\pm}$ cofinite $C_{1\pm}$

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\cal V}$ has a decomposition

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is $C_{1-\epsilon}$ cofinite, $\epsilon_{1-\epsilon}$

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\cal V}$ has a decomposition

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is C_{1} -cofinite.

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\cal V}$ has a decomposition

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is C_{1} -cofinite.

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\cal V}$ has a decomposition

$$\mathcal{V}=\bigoplus_{\nu\in\mathcal{S}}L_{\nu}\otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is C_{1} -cofinite, C_{1} -cofinite, C_{2} -cofinite, C_{2} -cofinite, C_{3} -cofinite, C_{4} -cofinite, $C_{$

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\cal V}$ has a decomposition

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is C_{1} -cofinite.

 \mathcal{V}^G is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}$ -modules.

 \mathcal{V}^G has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of \mathcal{V}^G follows from these observations.

Let $\mathcal{V} = \mathcal{H}(n) \otimes \mathcal{F}(m) \otimes \mathcal{S}(r) \otimes \mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: V^G is SFG

 $\mathcal{V}^{\textit{G}}$ is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}\text{-modules}.$

 $\mathcal{V}^{\textit{G}}$ has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of \mathcal{V}^G follows from these observations.

Let $\mathcal{V} = \mathcal{H}(n) \otimes \mathcal{F}(m) \otimes \mathcal{S}(r) \otimes \mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: V^G is SFG

 $\mathcal{V}^{\textit{G}}$ is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}\text{-modules}.$

 \mathcal{V}^G has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of $\mathcal{V}^{\mathcal{G}}$ follows from these observations.

Let $\mathcal{V}=\mathcal{H}(n)\otimes\mathcal{F}(m)\otimes\mathcal{S}(r)\otimes\mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: \mathcal{V}^G is SFG.

 $\mathcal{V}^{\textit{G}}$ is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}\text{-modules}.$

 \mathcal{V}^{G} has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of $\mathcal{V}^{\mathcal{G}}$ follows from these observations.

Let $\mathcal{V} = \mathcal{H}(n) \otimes \mathcal{F}(m) \otimes \mathcal{S}(r) \otimes \mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: \mathcal{V}^G is SFG.

 $\mathcal{V}^{\textit{G}}$ is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}\text{-modules}.$

 \mathcal{V}^{G} has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of $\mathcal{V}^{\textit{G}}$ follows from these observations.

Let $\mathcal{V} = \mathcal{H}(n) \otimes \mathcal{F}(m) \otimes \mathcal{S}(r) \otimes \mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: \mathcal{V}^G is SFG

 \mathcal{V}^{G} is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}$ -modules.

 \mathcal{V}^{G} has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of $\mathcal{V}^{\textit{G}}$ follows from these observations.

Let $\mathcal{V} = \mathcal{H}(n) \otimes \mathcal{F}(m) \otimes \mathcal{S}(r) \otimes \mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: \mathcal{V}^G is SFG.

$K \subset \mathbb{C}$ a subset which is at most countable.

 F_K the \mathbb{C} -algebra of rational functions

$$\frac{p(\kappa)}{q(\kappa)}$$
, $\deg(p) \le \deg(q)$,

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa \to \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

 $K \subset \mathbb{C}$ a subset which is at most countable.

 F_K the \mathbb{C} -algebra of rational functions

$$\frac{p(\kappa)}{q(\kappa)}$$
, $\deg(p) \leq \deg(q)$,

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa \to \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

 $K \subset \mathbb{C}$ a subset which is at most countable.

 F_K the \mathbb{C} -algebra of rational functions

$$\frac{p(\kappa)}{q(\kappa)}$$
, $\deg(p) \leq \deg(q)$,

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa \to \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

 $K \subset \mathbb{C}$ a subset which is at most countable.

 F_K the \mathbb{C} -algebra of rational functions

$$\frac{p(\kappa)}{q(\kappa)}$$
, $\deg(p) \leq \deg(q)$,

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa \to \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

 $K \subset \mathbb{C}$ a subset which is at most countable.

 $F_{\mathcal{K}}$ the \mathbb{C} -algebra of rational functions

$$\frac{p(\kappa)}{q(\kappa)}$$
, $\deg(p) \leq \deg(q)$,

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa o \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

 $K \subset \mathbb{C}$ a subset which is at most countable.

 F_K the \mathbb{C} -algebra of rational functions

$$rac{p(\kappa)}{q(\kappa)}, \qquad \deg(p) \leq \deg(q),$$

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa o \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

13. Examples

Let $\mathfrak g$ be a reductive Lie algebra with a nondegenerate form \langle,\rangle .

 $V^k(\mathfrak{g})$ the corresponding universal affine vertex algebra.

Exists deformable family $\mathcal V$ with $K=\{0\}$ satisfying

$$V_k = V/(\kappa^2 - k) \cong V^k(\mathfrak{g}), \qquad k \neq 0$$

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$

Let $G \subset \operatorname{Aut}(V^k(\mathfrak{g}))$ be a reductive group.

We have $\lim_{\kappa\to\infty} \mathcal{V}^G \cong \mathcal{H}(n)^G$.

Cor: $V^k(\mathfrak{g})^G$ is SFG for generic values of k

Let \mathfrak{g} be a reductive Lie algebra with a nondegenerate form \langle,\rangle .

 $V^k(\mathfrak{g})$ the corresponding universal affine vertex algebra.

Exists deformable family ${\mathcal V}$ with $K=\{0\}$ satisfying

$$V_k = V/(\kappa^2 - k) \cong V^k(\mathfrak{g}), \qquad k \neq 0.$$

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$.

Let $G \subset \operatorname{Aut}(V^k(\mathfrak{g}))$ be a reductive group.

We have $\lim_{\kappa\to\infty} \mathcal{V}^{\mathsf{G}} \cong \mathcal{H}(n)^{\mathsf{G}}$.

Let $\mathfrak g$ be a reductive Lie algebra with a nondegenerate form \langle,\rangle .

 $V^k(\mathfrak{g})$ the corresponding universal affine vertex algebra.

Exists deformable family ${\mathcal V}$ with ${\mathcal K}=\{0\}$ satisfying

$$V_k = V/(\kappa^2 - k) \cong V^k(\mathfrak{g}), \qquad k \neq 0.$$

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$

Let $G \subset \operatorname{Aut}(V^k(\mathfrak{g}))$ be a reductive group.

We have $\lim_{\kappa \to \infty} \mathcal{V}^{\mathsf{G}} \cong \mathcal{H}(n)^{\mathsf{G}}$

Let \mathfrak{g} be a reductive Lie algebra with a nondegenerate form \langle , \rangle .

 $V^k(\mathfrak{g})$ the corresponding universal affine vertex algebra.

Exists deformable family ${\mathcal V}$ with ${\mathcal K}=\{0\}$ satisfying

$$V_k = V/(\kappa^2 - k) \cong V^k(\mathfrak{g}), \qquad k \neq 0.$$

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$.

Let $G \subset \operatorname{Aut}(V^k(\mathfrak{g}))$ be a reductive group.

We have $\lim_{\kappa\to\infty} \mathcal{V}^{\mathsf{G}} \cong \mathcal{H}(n)^{\mathsf{G}}$.

Let \mathfrak{g} be a reductive Lie algebra with a nondegenerate form \langle,\rangle .

 $V^k(\mathfrak{g})$ the corresponding universal affine vertex algebra.

Exists deformable family ${\mathcal V}$ with ${\mathcal K}=\{0\}$ satisfying

$$V_k = V/(\kappa^2 - k) \cong V^k(\mathfrak{g}), \qquad k \neq 0.$$

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$.

Let $G \subset \operatorname{Aut}(V^k(\mathfrak{g}))$ be a reductive group.

We have $\lim_{\kappa\to\infty} \mathcal{V}^{\mathcal{G}} \cong \mathcal{H}(n)^{\mathcal{G}}$.

Let \mathfrak{g} be a reductive Lie algebra with a nondegenerate form \langle,\rangle .

 $V^k(\mathfrak{g})$ the corresponding universal affine vertex algebra.

Exists deformable family ${\mathcal V}$ with ${\mathcal K}=\{0\}$ satisfying

$$V_k = V/(\kappa^2 - k) \cong V^k(\mathfrak{g}), \qquad k \neq 0.$$

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$.

Let $G \subset \operatorname{Aut}(V^k(\mathfrak{g}))$ be a reductive group.

We have $\lim_{\kappa\to\infty}\mathcal{V}^{\mathcal{G}}\cong\mathcal{H}(n)^{\mathcal{G}}$.

Let \mathfrak{g} be a reductive Lie algebra with a nondegenerate form \langle,\rangle .

 $V^k(\mathfrak{g})$ the corresponding universal affine vertex algebra.

Exists deformable family ${\mathcal V}$ with ${\mathcal K}=\{0\}$ satisfying

$$V_k = V/(\kappa^2 - k) \cong V^k(\mathfrak{g}), \qquad k \neq 0.$$

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$.

Let $G \subset \operatorname{Aut}(V^k(\mathfrak{g}))$ be a reductive group.

We have $\lim_{\kappa\to\infty}\mathcal{V}^{\mathsf{G}}\cong\mathcal{H}(\mathsf{n})^{\mathsf{G}}$.

Let $\mathfrak g$ be a reductive Lie algebra of dimension n, with nondegenerate form \langle,\rangle .

Let $\mathfrak{g}'\supset\mathfrak{g}$ be a Lie algebra of dimension m>n, with nondegenerate form extending \langle,\rangle .

We have inclusion $V^k(\mathfrak{g}) \subset V^k(\mathfrak{g}')$.

Thm: (Creutzig-L, 2014) For all $\mathfrak{g}, \mathfrak{g}', \mathcal{C}^k = \text{Com}(V^k(\mathfrak{g}), V^k(\mathfrak{g}'))$ is SFG for generic values of k.

Idea of proof: $\lim_{k\to\infty} \mathcal{C}^k \cong \mathcal{H}(m-n)^G$. Here G is a reductive group with Lie algebra \mathfrak{g} .

Let $\mathfrak g$ be a reductive Lie algebra of dimension n, with nondegenerate form \langle , \rangle .

Let $\mathfrak{g}'\supset\mathfrak{g}$ be a Lie algebra of dimension m>n, with nondegenerate form extending \langle,\rangle .

We have inclusion $V^k(\mathfrak{g}) \subset V^k(\mathfrak{g}')$.

Thm: (Creutzig-L, 2014) For all $\mathfrak{g}, \mathfrak{g}', \mathcal{C}^k = \text{Com}(V^k(\mathfrak{g}), V^k(\mathfrak{g}'))$ is SFG for generic values of k.

Idea of proof: $\lim_{k\to\infty} C^k \cong \mathcal{H}(m-n)^G$. Here G is a reductive group with Lie algebra \mathfrak{g} .

Let $\mathfrak g$ be a reductive Lie algebra of dimension n, with nondegenerate form \langle , \rangle .

Let $\mathfrak{g}'\supset\mathfrak{g}$ be a Lie algebra of dimension m>n, with nondegenerate form extending \langle,\rangle .

We have inclusion $V^k(\mathfrak{g}) \subset V^k(\mathfrak{g}')$.

Thm: (Creutzig-L, 2014) For all $\mathfrak{g}, \mathfrak{g}', \mathcal{C}^k = \text{Com}(V^k(\mathfrak{g}), V^k(\mathfrak{g}'))$ is SFG for generic values of k.

Idea of proof: $\lim_{k\to\infty} C^k \cong \mathcal{H}(m-n)^G$. Here G is a reductive group with Lie algebra \mathfrak{g} .

Let $\mathfrak g$ be a reductive Lie algebra of dimension n, with nondegenerate form \langle , \rangle .

Let $\mathfrak{g}'\supset\mathfrak{g}$ be a Lie algebra of dimension m>n, with nondegenerate form extending \langle,\rangle .

We have inclusion $V^k(\mathfrak{g}) \subset V^k(\mathfrak{g}')$.

Thm: (Creutzig-L, 2014) For all $\mathfrak{g}, \mathfrak{g}', \mathcal{C}^k = \text{Com}(V^k(\mathfrak{g}), V^k(\mathfrak{g}'))$ is SFG for generic values of k.

Idea of proof: $\lim_{k\to\infty} \mathcal{C}^k \cong \mathcal{H}(m-n)^G$. Here G is a reductive group with Lie algebra \mathfrak{g} .

Let $\mathfrak g$ be a reductive Lie algebra of dimension n, with nondegenerate form \langle , \rangle .

Let $\mathfrak{g}'\supset\mathfrak{g}$ be a Lie algebra of dimension m>n, with nondegenerate form extending \langle,\rangle .

We have inclusion $V^k(\mathfrak{g}) \subset V^k(\mathfrak{g}')$.

Thm: (Creutzig-L, 2014) For all $\mathfrak{g}, \mathfrak{g}', \mathcal{C}^k = \text{Com}(V^k(\mathfrak{g}), V^k(\mathfrak{g}'))$ is SFG for generic values of k.

Idea of proof: $\lim_{k\to\infty} C^k \cong \mathcal{H}(m-n)^G$. Here G is a reductive group with Lie algebra \mathfrak{g} .

Let \mathfrak{g} be a reductive Lie algebra of dimension n, with nondegenerate form \langle,\rangle .

Let $\mathfrak{g}'\supset\mathfrak{g}$ be a Lie algebra of dimension m>n, with nondegenerate form extending \langle,\rangle .

We have inclusion $V^k(\mathfrak{g}) \subset V^k(\mathfrak{g}')$.

Thm: (Creutzig-L, 2014) For all $\mathfrak{g}, \mathfrak{g}', \mathcal{C}^k = \text{Com}(V^k(\mathfrak{g}), V^k(\mathfrak{g}'))$ is SFG for generic values of k.

Idea of proof: $\lim_{k\to\infty} C^k \cong \mathcal{H}(m-n)^G$. Here G is a reductive group with Lie algebra \mathfrak{g} .

