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1. Orbifolds and cosets

Let V be a vertex algebra.
G C Aut(V) a finite-dimensional, reductive group. Define orbifold

Ve ={veV|gv=v, VYgeGl

A CV a vertex subalgebra. Define coset

Com(A, V) ={veV|[a(z),v(w)] =0, Vae A}

Suppose V has a nice property, such as strong finite generation,
Co-cofiniteness, or rationality.

Problem: Do V¢ and Com(A, V) inherit this property?
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2. Classical invariant theory

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over C).

C[V] ring of polynomial functions on V.

C[V]€ ring of G-invariant polynomials.

Fundamental problem: Find generators and relations for C[V]C.
Thm: (Hilbert, 1893) C[V] is finitely generated for any G and V.

Basis theorem, Nullstellensatz, and syzygy theorem were all
introduced by Hilbert in connection with this problem.
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3. First and second fundamental theorems

Let V be a G-module. For j >0, let V; = V. Let

R = Cl[®j0V}]°.

First fundamental theorem (FFT) for (G, V) is a set of generators
for R.

Second fundamental theorem (SFT) for (G, V) is a set of
generators for the ideal of relations in R.

Some known examples:
» Standard representations of classical groups (Weyl, 1939)
» Adjoint representations of classical groups (Procesi, 1976),

» 7-dimensional respresentation of Gy (Schwarz, 1988).
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4. Example: G =7Z/27Z and V =C

Generator 0 € 7Z/27 acts on V by —1.
xj a basis for V" for j > 0.
0(x) = —x.

R = C[®j>0 Vj]Z/2Z = C[xo, x1, X2, - - .]Z/ZZ is the subalgebra of
even degree.

FFT: R has quadratic generators q; ; = xjxj, 1 < j.

SFT: Relations are q; jqx,; — 9i k9,
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Heisenberg vertex algebra H has generator b(z) satisfying

b(z)b(w) ~ (z — w) 2.

Basis {: 0¥b---0Kb: | 0< kg < --- < k. }.

Aut(H) = Z/2Z, generator 6 : H — H acts by 6(b) = —b.
H is linearly isomorphic to C[xp, X1, X2, ...] where x; <> db.
Derivation J(xj) = Xj1.

Z/27 action 0(x;) = —Xx;.
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R = C[xo, X1, X2, . . . ]“/?% has generators

qij = XiX;, 0<i<y.

Relations are q; jqk,; — Qi kqj,I-
R = H”/?% and q;; correspond to strong generators for H”/?%:

w;J::aibajb:, 0<i <y

Recall 0(qij) = qit1,j + qij+1.
{q0.2k|k > 0} minimal generating set for R as a differential algebra.

{wo.2x|k > 0} strongly generates H%/?%. But this is not minimal!
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. Example, cont’d

Thm: (Dong-Nagatomo, 1999) HZ/?Z has minimal strong
generating set {wo,0, w02}, and is of type W(2,4).

For all k > 2, we have a decoupling relation wg 2k = P(wo,0,w0,2)

2 4 1
Ex : wo 4 = —5 : wo,oasz,o : +§ I Wo,0wo,2 +g : 8@00,08(,00,0 :
7 7
—0wo2 — 5=0%wo 0.
+5 Wo,2 — 350 Wo,0

Alternatively, this can be written in the form
4

7 7
wo,4 = —5(: wWp,0wW1,1 - — :Wp1wo,1 Z) + gasz’g — %8400070.

This is a quantum correction of the analogous classical relation
do,041,1 — qo,190,1-
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Heisenberg algebra (n): even generators b',i =1,...,n,

b (2)b (w) ~ 6 j(z — w) 2.

Free fermion algebra F(n): odd generators ¢/,i =1,...,n,

¢ (2)¢/ (W) ~ 6 j(z — w) L.

f3v-system S(n): even generators 3,7/, i =1,...,n,

Bl(z)¥ (w) ~ 6 j(z —w) L.

Symplectic fermion algebra A(n): odd generators
el fli=1,...,n,

e'(2)f(w) ~ & j(z — w) 2.
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H(n) and F(n) have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) S(n)>P?") is of type W(2,4,...,2n% + 4n).
Thm: (L, 2012) F(n)°(" is of type W(2,4,...,2n)

Thm: (Creutzig-L, 2014) A(n)°P(2") is of type W(2,4,...,2n).
Conj: (L, 2011) H(n)O(" is of type W(2,4,...,n? + 3n).

Thm: (L 2012) This conjecture holds for 1 < n < 6. For all n,
H(n)O(" is strongly finitely generated (SFG).

These results are formal consequences of Weyl's FFT and SFT for
O(n) and Sp(2n).
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Thm: (L, 2012) Let V be either H(n), F(n), S(n), or A(n). For
any reductive G C Aut(V), V¢ is SFG.

Sketch of proof: For any reductive G C Aut(V), V° is a module
over YAut(V)

By a theorem of Dong-Li-Mason (1996), V has a decomposition
V=P Lem,.
veS
L, ranges over all irreducible, finite-dimensional Aut())-modules.
M,, are inequivalent, irreducible VAut(V)_modules.
Zhu algebra of VAU(Y) is abelian, so each M, is highest-weight.

Using SFG property of VA"(V) each M, is Ci-cofinite.
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VC is also a direct sum of irreducible VAU'*(Y)_modules.

VC has a generating set that lies in the direct sum of finitely many
of these modules.

SFG property of V¢ follows from these observations.

Let V = H(n) ® F(m) ® S(r) ® A(s) be a general free field
algebra.

Let G C Aut(V) be any reductive group preserving the tensor
factors, i.e, G C O(n) x O(m) x Sp(2r) x Sp(2s).

Cor: VC is SFG.
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12. Deformable families

K C C a subset which is at most countable.

Fk the C-algebra of rational functions

P, dexlp) < deg(a)

such that the roots of g lie in K.

A deformable family B is a vertex algebra defined over F.
For k ¢ K, ordinary vertex algebra Bx = B/(k — k).

Boo = lim,_oo B is a well-defined vertex algebra over C.

Thm: (Creutzig-L, 2012) A strong generating set for B, gives rise
to a strong generating set for By with the same cardinality, for
generic values of k.
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Voo = limg_00 V = H(n), where n = dim(g).
Let G C Aut(V*(g)) be a reductive group.
We have lim,_,o V¢ 22 H(n)C.

Cor: VK(g)® is SFG for generic values of k.
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nondegenerate form extending (, ).

We have inclusion V*(g) C V*(g').

Thm: (Creutzig-L, 2014) For all g,¢’, Ck = Com(Vk(g), V¥(g'))
is SFG for generic values of k.

Idea of proof: limy_,., CX = H(m — n)®. Here G is a reductive
group with Lie algebra g.

In some examples, can describe the set of nongeneric values of k.
It is often finite or has compact closure.



